deadly for your lungs when broken and your breathing next to them..^^^^^
2. How could mercury released from a broken CFL affect health?
2.1 How can inhaling or swallowing mercury affect health?
2.2 Does the amount of mercury released by a broken CFL affect health?
2.1 How can inhaling or swallowing mercury affect health?
The SCHER opinion states:
3. Opinion 3.1 question A
Assess the possible health risks to consumers, from the mercury released from accidental breakage of CFLs. In doing so, the SCHER is asked to consider risks to certain vulnerable groups of the population such as children or pregnant women.
Toxicology of elemental Hg
Effects of Hg0 inhalation in humans have mainly been characterised after accidental short-term and high-concentration exposures, and after long-term occupational exposures. After inhalation of very high concentrations, orders of magnitude above currently valid occupational exposure limits (e.g., the German MAK-value is 84 μg/m3) symptoms of acute toxicity characterised by restlessness, inflammatory responses in the lung, gastroenteritis and renal damage have been reported. In addition, neurotoxic symptoms such as tremor and increased sensitivity to stimuli are also reported.
After long-term Hg0 inhalation exposures, effects on the central nervous system and kidney apparently are the most sensitive end-points of toxicity. These include effects on a wide variety of cognitive, sensory, personality and motor functions. In general, symptoms subside after removal from exposure. However, persistent effects (tremor, cognitive deficits) have been observed in occupationally exposed subjects 10-30 years after cessation of exposure.
Persons in rooms after breakage of a CFL may be exposed to mercury by inhalation and by **** intake. After inhalation, more than 80% of inhaled Hg0 vapour is absorbed by the lungs. Ingested Hg0 is poorly absorbed in the gastrointestinal tract (less than 0.01%). Skin absorption is insignificant in relation to human exposure to mercury vapour. The elimination of Hg0 after inhalation is slow (half-life of inhaled Hg0 is 60 days) with most being eliminated through urine (as mercury ions) and faeces (as Hg0). A small amount of absorbed Hg0 is also eliminated via exhalation and sweat (ATSDR 1992; Goldman and Shannon 2001; Halbach and Clarkson 1978; Houeto et al. 1994).
Studies on workers exposed to Hg vapour have reported a clear increase in symptoms of dysfunction of the central nervous system at exposure levels greater than 0.1 mg/m3. Some studies also reported subtle neurotoxicity at lower concentrations. Self-reported memory disturbances, sleep disorders, anger, fatigue, and/or hand tremors were increased in workers chronically exposed to an estimated air concentration of 0.025 mg/m3. In a recent assessment of all studies on the exposure-response relationship between inhaled Hg vapour and adverse health effects, IPCS concluded that several studies consistently demonstrate subtle effects on the central nervous system in long-term occupational exposures to mercury vapour at exposure levels of approximately 20 μg/m3 or higher (WHO/IPCS, 2002 Hg).
The kidney is, together with the central nervous system, a critical organ for exposure to mercury vapour. Elemental mercury can be oxidized to Hg2+. The kidney accumulates inorganic mercury to a larger extent than most other tissue. High-dose exposure to Hg2+ may cause (immune-complex mediated) glomerulonephritis with proteinuria and nephritic syndrome. Effects on the renal tubules, as demonstrated by increased excretion of low molecular proteins, have been shown at low-level exposure, and may constitute the earliest biological effect occurring after long-term exposure to air concentrations of 25-30 μg Hg0/m3.
A large number of serious and even fatal intoxications have been described after ingestion of inorganic mercury compounds, but data from humans do not allow identification of no-adverse exposure levels, especially in long-term exposure. From studies on experimental animals, a No-Observed-Adverse-Effect Level (NOAEL) of 0.23 mg/kg per day was identified (US ATSDR, 1999; WHO/IPCS, 2002)
Children exposed to Hg0 vapours may exhibit symptoms like breathing difficulty, swelling and erythema of the hands and feet, and pealing pink skin at the tips of the fingers and toes. These symptoms are collectively called acrodynia (Albers et al. 1982; ATSDR, 1992, 1999; CDC 1991; Clarkson 2002; Isselbacher et al. 1994; Satoh 2000).
Children and the foetus during various stages of their development are more vulnerable than adults. Fast cell proliferation and migration occur during the second and third trimester of gestation and continues to occur in the first 2-3 years of age. Neural development extends from the embryonic period through adolescence (Rice and Barone, 2000). Since mercury inhibits cell division and migration during development, the foetus and young children are particularly at risk when exposed.
Compact fluorescent lamp
From Wikipedia, the free encyclopedia
Jump to: navigation, search
"Low-energy light-bulb" redirects here. For other low-energy bulbs, see LED lamp.
The tubular-type compact fluorescent lamp is one of the most popular types in Europe
A helical integrated CFL, one of the most popular designs in North America, since 1995, when a Chinese firm, Shanghai Xiangshan, marketed the first successful design.[1]
Compact fluorescent light bulb with GU24 connector
Comparison of compact fluorescent light bulbs with 105W, 36W, and 11W power consumption
A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light, and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent lamp; some types fit into light fixtures formerly used for incandescent lamps. The lamps use a tube which is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.
Compared to general-service incandescent lamps giving the same amount of visible light, CFLs use one-fifth to one-third the electric power, and last eight to fifteen times longer. A CFL has a higher purchase price than an incandescent lamp, but can save over five times its purchase price in electricity costs over the lamp's lifetime.[2] Like all fluorescent lamps, CFLs contain mercury, a neurotoxin especially dangerous to children and pregnant women,[3] which complicates their disposal. In many countries, governments have established recycling schemes for CFLs and glass generally.